Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nonlinear optoacoustics enable effective communication across the air-water interface. However, the requirement of a high-power laser and the vapor cloud buildup can limit the power efficiency and data rate. Thus, a proper modulation and encoding scheme is necessary. This article tackles this issue by presenting an optical focusing-based adaptive modulation (OFAM) technique that can dynamically control the underwater acoustic source (plasma) and acoustic pressure. Specifically, the article describes two variants of OFAM for a single laser transmitter with stationary focusing (OFAM-1D) and dynamic focusing (OFAM-3D). The data rate of OFAM-1D and OFAM-3D is approximately 6 and 4.4 times higher than peak detection based on-off keying (PDOOK). Furthermore, both techniques are 137% more power efficient than PDOOK. Studying the bit error rate (BER) in the presence of ambient underwater noises for different node positions has indicated that OFAM can achieve low BER even at a 300-m depth for 50- and 60-mJ laser pulse energy. Moreover, machine learning (ML) techniques have been leveraged in the demodulation process for increased robustness. Specifically, the random forest (RF) model could yield up to 94.75% demodulation accuracy. Our results indicate that OFAM can lead to a new paradigm of air to underwater wireless communication.more » « less
-
In an application involving Autonomous Underwater Vehicles (AUV) it is important to track the trajectory and spatially correlate the collected data. Relying on an Inertial Navigation System (INS) while factoring in the initial AUV position would not suffice given the major accumulated errors. Employing surface nodes is a logistically complicated option, especially for missions involving emerging events. This paper proposes a novel localization approach that offers both agility and accuracy. The idea is to exploit a communication mechanism across the air-water interface. In particular, we employ an airborne unit, e.g., a drone, that scans the area of interest and uses visual light communication (VLC) to reach the AUV. In essence, the airborne unit defines virtual anchors with known GPS coordinates. The AUV uses the light intensity of the received VLC transmissions to estimate the range relative to the anchor points and then determine its own global coordinates at various time instances. The proposed approach is validated through extensive simulation experiments. The simulation results demonstrate the viability of our approach and analyze the effect of the VLC parameters.more » « less
-
The current era is notably characterized by the major advances in communication technologies. The increased connectivity has been transformative in terrestrial, space, and undersea applications. Nonetheless, the water medium imposes unique constraints on the signals that can be pursued for establishing wireless links. While numerous studies have been dedicated to tackling the challenges for underwater communication, little attention has been paid to effectively interfacing the underwater networks to remote entities. Particularly it has been conventionally assumed that a surface node will be deployed to act as a relay using acoustic links for underwater nodes and radio links for air-based communication. Yet, such an assumption could be, in fact, a hindrance in practice. The paper discusses alternative means by allowing communication across the air–water interface. Specifically, the optoacoustic effect, also referred to as photoacoustic effect, is being exploited as a means for achieving connectivity between underwater and airborne nodes. The paper provides background, discusses technical challenges, and summarizes progress. Open research problems are also highlighted.more » « less
-
To increase underwater acoustic signal detectability and conserve energy, nodes leverage directional transmissions. In addition, nodes operate in a three-dimensional (3D) environment that is categorized as inhomogeneous where a propagating signal changes its direction based on the observed sound speed profile (SSP). Coupling 3D directional transmission with frequent node drifts and the varying underwater SSP complicates the process of selecting suitable transmission angles to maintain underwater communication links. Fundamentally, utilizing directional transmission while nodes are drifting causes breaks in established communication links and thus nodes need to find new angles to reestablish these links. Moreover, selecting arbitrary transmission angles may lead to overlapping beams or result in leaving an underwater region uncovered. To tackle the abovementioned challenges, this paper proposes an autonomous beam selection approach that optimizes underwater communication by selecting non-overlapping beams while mitigating the possibility of missing a region, i.e., maximize coverage. Such optimization is achieved by utilizing a structured angle selection mechanism that accounts for the capability of the used transducer. Moreover, we introduce an algorithm suited for resource constrained nodes to classify rays into different types. Then we divide the underwater medium into regions where each region is identified by the limits of the coverage area of each ray type. Finally, we utilize the limits of these regions to aid nodes in selecting the best ray to reestablish communication with drifted nodes. We validate our contribution through simulation where actual SSPs are leveraged to validate the beam classification process.more » « less
An official website of the United States government
